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Abstract

Transfer learning is fundamental for intelligence; agents ex-
pected to operate in novel and unfamiliar environments must
be able to transfer previously learned knowledge to new do-
mains or problems. However, knowledge transfer manifests
at different levels of representation. The underlying compu-
tational mechanisms in support of different types of transfer
learning remain unclear. In this paper, we approach the transfer
learning challenge by decomposing the underlying computa-
tional mechanisms involved in bottom-up associative learning
and top-down causal schema induction. We adopt a Bayesian
framework to model causal theory induction and use the in-
ferred causal theory to transfer abstract knowledge between
similar environments. Specifically, we train a simulated agent
to discover and transfer useful relational and abstract knowl-
edge by interactively exploring the problem space and extract-
ing relations from observed low-level attributes. A set of hier-
archical causal chains are constructed to determine which ac-
tions can affect which objects based on low-level attributes.
Our agent combines causal theories and associative learning
to select a sequence of actions most likely to accomplish the
task. To evaluate the proposed framework, we compare per-
formances of the simulated agent with human performance in
the OpenLock environment, a virtual “escape room” with a
complex hierarchy that requires agents to reason about causal
structures governing the system. While the simulated agent re-
quires more attempts than human participants, the qualitative
trends of transfer in the learning situations are similar between
humans and our trained agent. These findings suggest human
causal learning in complex, unfamiliar situations may rely on
the synergy between bottom-up associative learning and top-
down schema reasoning.

Introduction

The human capacity for inferring causal relations in un-

familiar environments is a hallmark of human intelligence

(Mackie, 1974) that is often taken for granted in daily life. An

illustrative example is that of the escape room—a prevalent

social activity where groups of people inside of a locked room

work together to complete sub-goals (puzzles) to achieve the

goal—escape from the room. In order to succeed, teams

must: (i) identify goal-relevant entities in the environment

among distractors, (ii) develop a causal model for individual

sub-goals, and (iii) interact with scene components to refine

entity- and goal-based hypotheses. In this paper, we propose

that inference in scenarios like the one above depends on two

critical learning components. First, attributes relevant to can-

didate causal hypotheses are learned by interacting with en-

tities in the scene, and second, causal hypotheses are refined

based on newly encoded attribute-based knowledge.

It is worth noting that the above approach is generally in-

consistent with early studies on causal learning in psycholog-

ical research (Holyoak & Cheng, 2011). Early studies pri-

marily focused on animal learning and conditioning experi-

mental paradigms, framing causal understanding as learned

stimulus-response relationships attained primarily through

observation (e.g., Shanks and Dickinson (1988)). Given as-

sociative weights on cue-effect links, the Rescorla-Wagner

model was often utilized to explain how humans (and non-

humans) construct expectations based on the co-occurrence

of perceptual stimuli (Rescorla & Wagner, 1972). However,

the knowledge that people have about causal mechanisms in

the distal world has been shown to extend beyond the co-

variation between observed (perceptual) variables. For in-

stance, adults interact with dynamic physical scenarios in

ways that maximize information relevant to their causal hy-

potheses (Bramley, Gerstenberg, Tenenbaum, & Gureckis,

2018), and even infants test their beliefs about the physical

characteristics of objects through exploration and experimen-

tation (Stahl & Feigenson, 2015).

Contrary to the associative account, researchers have

demonstrated that human learning and reasoning in novel

(causal) environments rely heavily on the discovery of ab-

stract causal structure (Waldmann & Holyoak, 1992) and

strength (Cheng, 1997) rather than purely associative (sta-

tistical) dependencies. More recently, the integration of

causal graphical models and Bayesian statistical inference

(i.e., Bayes nets) has provided a general representational

framework for how this structure and strength is learned

and transferred to novel situations (Griffiths & Tenenbaum,

2005, 2009; Tenenbaum, Griffiths, & Kemp, 2006; Bramley,

Lagnado, & Speekenbrink, 2015; Bramley, Dayan, Griffiths,

& Lagnado, 2017; Edmonds et al., 2018; Holyoak & Cheng,

2011). Under this framework, causal knowledge plays an

essential role in constructing a flexible model of the world

in which environmental states represent some status in the

world, and connections between states imply the strength of

a causal relationship.

We propose that creative discovery in novel domains re-

lies on both causal structure and associations. Knowledge

of causal structure enables agents to simulate how interven-

tions will influence the environmental state, and without asso-

ciations to guide exploration, the number of causal hypothe-

ses to consider becomes intractable. For problem domains

where the number of possible interventions is particularly

high, the need for associative “guidance” can drastically im-

prove decision-making. To solve this problem, we propose
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Figure 2: Common Cause (CC) and Common Effect (CE)

structures used in the OpenLock task, in which Li indicates a

lever in the scene, and D indicates the effect of opening the

door. In (a) CC3 and (b) CE3 condition, both include three

causal cues but with different causal structures.

sets, regardless of the outcome. Agents also operate under

a limited number of episodes (30) in a particular room, re-

gardless of whether all solutions are found. We denote three

movements as an attempt and each room as a trial. After

completing a trial, agents move to a new trial (i.e., room)

with the same underlying causal schema but a different lever

arrangement. This setup ensures that agents do not overfit

their understanding of the environment to a single trial; i.e., if

agents are forming a useful abstraction, the knowledge they

acquired in previous trials should aid in their ability to find

all solutions in new trials. Note that in a 3-lever room, an op-

timal agent should produce both solutions within 3 attempts.

One attempt may be used to identify the role of the observed

levers in the abstract structure, and the remaining attempts are

used for each solution.

Human Results

The analyses reported herein expand on previous behavioral

findings by examining the number of attempts needed to find

each solution rather than accumulating all solutions (see Hu-

man Data, Edmonds et al., 2018). The purpose of this ex-

ploration was to tease apart the separate learning components

involved in the OpenLock task. Participants who failed to find

all solutions in the allotted maximum number of attempts in

any trial were removed from the analysis (24 participants re-

moved from each condition). Eighty human participants were

assigned to each condition (CC and CE).

We first examined whether the number of attempts needed

to find each solution varied across trials. The behavioral data

from each experimental condition is depicted in Figure 4.

For participants who trained under a Common Cause (CC)

schema, attempts needed to find the first solution decreased

significantly following both the first trial (t(55)= 6.80; p<

.001) and second trial (t(55)= 2.52; p= .02). First solution

attempts also showed a marginal decrease following the fifth

trial (t(55)= 1.99; p= .051). For the second solution, the

number of attempts needed decreased significantly following

the first trial only (t(55)= 4.40; p< .001). A similar trend

was observed for participants assigned to the Common Ef-

fect (CE) condition—attempts needed to find the first solution

decreased following the first trial (t(55)= 5.30; p< .001) and

third trial (t(55)= 2.19; p= .03), and attempts needed to find

the second solution decreased following the first trial only

(t(55)= 2.36; p= .02).

The human results demonstrate that regardless of which

causal schema participants trained with, significant learning

appeared to occur in the early trials for both the first and sec-

ond solution. However, the learning rate for the first solution

was much faster, and the learning rate for the second solution

was relatively less pronounced. In the next sections, we de-

scribe our computational approach and report whether it can

account for human performance.

Model Details

We begin by describing our agent’s process for combining

top-down (abstract) causal knowledge with bottom-up (asso-

ciative) attribute knowledge. The agent decides which action

to perform by (i) computing the posterior probability of each

candidate causal chain based on attribute knowledge and (ii)

making a selection using the computed posterior and a model-

based planner.

Causal Theory Induction: To explain trends in human per-

formance, we follow a Bayesian account of how hierarchical

causal theories can be induced from data (Griffiths & Tenen-

baum, 2005, 2009; Tenenbaum et al., 2006). The key insight

in this framework is that hierarchy enables abstraction, and a

theory provides general background knowledge about a task

or environment at the highest level. Theories consist of prin-

ciples; for example, an analysis of evolutionary traits between

species can be represented with a taxonomic tree and muta-

tion processes (example from Tenenbaum et al. (2006)). Prin-

ciples lead to structure; for example, a tree describing how

primates evolved and split into species over time. Finally,

structure leads to data; such as shared genes among primates.

The goal of this work is to model a human decision-

making process where agents are required to learn transfer-

able knowledge between different yet similar environments.

We approach the problem from the perspective of active

causal theory learning, where we expect an agent endowed

with no information to learn the underlying abstract mechan-

ics and commonalities between environments. This approach

naturally places the focus of the learning task on how the

agent decides the best action to take next and how to effec-

tively integrate the results into the agent’s model of the world.

In this work, we adhere to two general principles of learn-

ing: (i) causal relations induce state changes in the envi-

ronment, and non-causal relations do not (referred to as our

bottom-up β theory), and (ii) causal structures that have pre-

viously been useful may be useful in the future (referred to

as our top-down γ theory). Specifically, the environment

provides a set of attributes, such as position and color, and

our agent learns which attributes are associated with levers

that induce state changes in the environment. Our agent

also learns a distribution over abstract causal structures (i.e.,

schemas) that provide generalized notions of task structure.

We define a causal chain hypothesis space, ΩC, over pos-

sible causal chains, c∈ΩC. Figure 3b shows the structure of

the causal chain. Each chain is defined by a tuple of sub-

chains c=(c0, . . . ,ck), where each subchain is defined as a

tuple ci =(ai,si,cra
i ,crs

i ). Each ai represents an action node

that the agent can intervene on (execute), and the space of ac-

tions, ΩA, consists of pushing and pulling on every lever and
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Figure 3: (a) An illustration of hierarchical structure of the

model. A bottom-up associative learning theory, β, and a top-

down causal theory, γ, serve as priors for the rest of the model.

The model makes decisions at the causal chain resolution. (b)

Atomic causal chain. The chain is composed by a set of sub-

chains, ci, where each ci is defined by: (i) ai, an action node

that can be intervened upon by the agent, (ii) si, a state node

capturing the time-invariant attributes and time-varying flu-

ents of the object, (iii) cra
i , the causal relation between ai and

si, and (iv) crs
i , the causal relation between si and si−1.

pushing on the door. Each si represents a state node. The state

node is defined as a tuple, si =(φi, fi), where φi is a vector

of time-invariant attributes and fi is a vector of time-varying

fluents. The state node is influenced by taking action ai ac-

cording to the causal relation cra
i and may be affected by a

previous state node through the causal relation crs
i . For in-

stance, in Figure 1a and Figure 3b, the action push for the

leftmost lever may transition the lever from the fluent pulled

to pushed through cra
0, which in turn transitions the upper-

most lever from locked to unlocked according to crs
1.

The space of attributes is denoted as Ωφ, consisting of po-

sition and color. The space of fluents, ΩF , consists of bi-

nary values for lever status (pushed or pulled) and lever lock

status (locked or unlocked). The space of states is defined

as ΩS =Ωφ×ΩF . The space of causal relations is defined

as ΩCR =ΩF ×ΩF , capturing the possibly binary transitions

between previous fluent values and the next fluent values.

We assume agents can directly intervene on actions, but

cannot directly intervene on states. This distinction adds

significantly more complexity to the causal chain hypothesis

space but means that we do not assume the effects of actions,

nor do we assume an agent can directly intervene on the value

of a particular fluent. We assume that an agent can execute

any action within the action space (through an intervention

on the action node in the causal chain), but how that action

affects the state of the world must be learned (i.e., the effects

of the actions are learned).

State nodes are decomposed into time-invariant attributes

and time-varying fluents. This decomposition aids in the

computational complexity of learning and inference; our

agents assumes attributes cannot be changed by actions or

other states. In addition, because the attributes are time-

invariant, attributes offer a grounding upon which the agent

can learn knowledge, regardless of action sequence or lever

configuration. In contrast, the fluents are time-varying and

include the latent state of the lever’s internal locking mech-

anism; i.e. locked or unlocked. The agent learns how to in-

fluence these latent states through observational cues about

which attributes are associated with a particular fluent. At-

tributes are defined by low-level features of an object, e.g.,

position, color, shape, orientation, etc.. These low-level at-

tributes provide general background knowledge about how

specific objects change under certain actions (for instance,

which levers can be pushed or pulled).

A background theory encodes general knowledge that can

be used to induce or evaluate a structural representation. We

use two background theories—one for bottom-up features,

denoted β, to learn beliefs about which attributes of objects

indicate the object can be interacted with to produce a causal

effect. This low-level knowledge about object attributes and

their propensity to be involved in causal relationships pro-

vides information to transfer between similar but different en-

vironments governed by common underlying dynamics. The

second background theory provides a top-down abstraction,

denoted γ, that assumes the causal structure of tasks have

similar structure across slightly different environments; i.e.,

changes in the observable environment do not alter the under-

lying causal structure of a task.

Attribute Learning: Attributes provide time-invariant

properties of an object. Categories of objects often share

common attributes; e.g., all cups share a common shape, all

stop signs are red, etc.. However, objects in a category may

vary in their physical form but share common functionality;

for instance, light switches come in a number of shapes and

sizes, but all examples share a common mechanism to transit

between states.

We learn which attributes are relevant to our causal hy-

potheses via a Bayesian learning process, based on our

assumption that causal relationships induce state changes.

Therefore, an object changing states under an action indi-

cates that the object’s attributes may be related to a causal

relationship. These attributes provide generalization clues for

the agent, such as insights into which low-level attributes in-

dicate that the corresponding object is part a solution. This

knowledge is invariant across trials and causal schemas.

The agent’s belief in an attribute being causal is mod-

elled with a multinomial distribution Mult(θ) parameterized

by θ. The posterior distribution of θ given observed data X

and the bottom-up theory β follows a Dirichlet distribution:

p(θ|X;β)=Dir(α′), where α′ is given by a maximum a pos-

teriori (MAP).

Attributes are learned in two different time scales: a global

timescale to learn attributes across all trials (between tri-

als) and a local timescale to learn attributes specific to this

trial (within trials). This separation allows the agent to

adapt quickly to trial-specific knowledge while maintaining

a global understanding across all trials. In each timescale, we

perform this attribute learning in the following steps: (i) draw

a sample (produce an observation by selecting an intervention

and observing the result), (ii) accept the sample if the envi-

ronment changed state in any way (i.e., there was an effect

from the intervention), and (iii) increase α of each attribute’s

Dirichlet distribution according to observed outcome.

A Dirichlet distribution, Dir(αG), is used to model the pos-



terior of the global attribute distribution. After finishing a

trial, the agent’s global Dirichlet parameters, αG, are updated

to incorporate the observed data within a trial.

For each trial, we initialize the parameters of the local at-

tribute Dirichlet distribution, Dir(αL), with a scaled sample

from the global Dirichlet, αL = kθ, where θ∼Dir(αG). This

scaling factor k reduces the variance and enables fast adapta-

tion of the agent’s local attribute beliefs. In our experiments,

we set k to initialize the local Dirichlet to have αL ∈ [1,10].

We introduce an additional variable, ρ to represent a casual

event according to our background theory β; i.e., that causal

events induce state changes in the environment. We use this

local prior over attributes as our bottom-up associative learn-

ing theory. We compute the likelihood that the attributes ρ of

a particular chain c are causally relevant given a background

theory β as:

p(ρ|c;β)= ∏
ci∈c

p(ρi|ci;β), (1)

where p(ρi|ci;β) is computed as

p(ρi|ci;β)∝ ∏
φi j∈si
si∈ci

p(ρi|φi j;β) (2)

and p(ρi|φi j;β) represents the probability that attribute φi j

adheres to the background theory β. Here, β represents the

probability that attribute φi j is associated with objects that in-

duce state changes. Note that p(ρi|φi j;β) is parameterized by

a sample from the local attribute Dirichlet distribution. Af-

ter finishing an attempt, we update the parameters αL of the

local distribution to incorporate the outcome of the attempt

and resample θ. Recall our associative theory: causal re-

lationships induce state changes in the environment; practi-

cally, p(ρi|φi j;β) represents the probability that this attribute

is associated with objects that produce state changes, under

the assumption these attributes are independently associated

with causal events. In our domain, an agent using this theory

should learn that grey levers are involved in causal events and

white levers are not. Additionally, the agent should initially

believe that position is an important attribute for detecting

causal relationships. However, as the agent observes multi-

ple configurations of levers with different positions of grey

levers, every position will be involved in causal events, and

therefore this belief should approach the uniform distribution.

This bottom-up inference enables agents to leverage low-

level associative information about causal relationships. We

then transfer this belief between trials, thereby enabling our

agent to leverage the knowledge acquired in one trial to trans-

fer to the next trial. The agent updates its belief regarding

which attributes it believes are causal after each attempt.

Abstract Schema Learning: Learning attributes that cor-

respond to causal cues is a critical to learn how an environ-

ment operates. However, many environments share common

high-level abstract causal structures. For instance, switches

come in all different shapes and sizes tailored to specific

tasks—from a light switch to a circuit breaker to a railroad

switch. Each of these domain-specific mechanisms share a

common abstract functionality—changing the state of some

object from one discrete fluent state to another.

We propose a model to learn abstract structural models that

can be used to instantiate domain-specific models to achieve a

task in an environment. This abstract knowledge is assumed

to be useful across domains, and agents may acquire a col-

lection of useful abstract models of different functionality.

Our model considers learning abstract knowledge as a form

of model selection, where the agent hypothesizes a space of

potential abstract structures and updates the beliefs in those

abstract structures based on its experience in the environment.

More specifically, we consider an abstract causal schema,

gA, from a hypothesis space of abstract schemas, ΩGA , to be

a structural description of some causal relationships (see Fig-

ure 2). The space ΩGA is enumerated in this work; i.e. all pos-

sible structural combinations of N = 2 trajectories (i.e. causal

chains) with length K = 3 are considered (since there are two

solutions and three actions per attempt). We introduce a prior

over abstract schemas, p(gA;γ), that is a multinomial distribu-

tion parameterized using a sample from Dirichlet distribution.

After completing a trial, the abstract schema that encodes the

solutions found in this trial receives a parameter update in

the Dirichlet distribution—i.e., an increase to the solution ab-

stract schema’s α.

These abstract structures are not bound to any particu-

lar instantiation of attributes, states, or actions. Instead,

they encode common structural properties under varying

instantiations—knowledge that may be useful when an ob-

servational setting is changed. In our task, abstract schemas

encode the abstract structures, some of which are useful for

solving OpenLock (i.e., common cause or common effect),

and we should expect agents to have a biased prior towards

these structures.

Next, we consider an instantiated schema, gI , to be a com-

position of causal chains, c∈ΩC. Instantiated schemas share

the same structure as abstract schemas, but contain specific

assignments for each a, s, crs
i , and cra

i of each subchain in the

schema. We compute the belief in an instantiated schema gI

according to the hierarchical structure in Figure 3a:

p(gI |do(q);γ)= ∑
gA∈Ω

GA

p(gI |gA
,do(q))p(gA;γ), (3)

where do(q) represents an intervention where the agent per-

forms q—the solutions found thus far, a set of action se-

quences q= {A0,A1, . . . ,An}, where Ai is an action sequence.

The do() operator is the intervention operation presented by

Pearl (2009), which allows the agent to bias its top-down in-

ference towards instantiated schemas that contain solutions

already found. Next, we compute the top-down belief in a

causal chain by summing over instantiated schemas that con-

tain the chain:

p(c|do(q);γ)= ∑
gI∈Ω

GI

p(c|gI
,do(q))p(gI |do(q);γ). (4)

These terms enable top-down inference on which chain is

most likely to adhere to instantiated schemas that reflect ab-

stract causal structures that have been useful in the past.



Learning which abstract schemas were successful in previ-

ous trials can be leveraged when the agent faces a new room

configuration with the same underlying abstract mechanism

governing the lock.

Intervention Selection: We formulate our intervention se-

lection as a combination of the top-down and bottom-up

causal chain beliefs, and we consider our learning mecha-

nisms, γ and β, to be independent. We compute the poste-

rior of the chain based on our top-down belief and bottom-up

likelihood, assuming a uniform prior p(ρ):

p(c|ρ,do(q);γ,β)∝ p(c|do(q);γ)p(ρ|c;β). (5)

Our agent maintains an explicit notion of the goal of the

task—to open the door. Human participants were also told

the precise goal of the task. Thus, we frame our intervention

selection process as a form of model-based planning. Our

agent seeks to infer the causal chain most likely to achieve

the goal—opening the door—given the agent’s current model

of the environment. The agent’s model of the environment

comes from two forms of learning: bottom-up associative at-

tribute learning and top-down abstract schema learning.

We define a target goal of our planner as a particular state

of the environment, denoted s∗. Given a target goal our agent

models its current state as a tuple of (n,q), where n represents

the number of solutions remaining, and q the set of solutions

already executed. The agent seeks to execute a causal chain

c in the hopes of transitioning n to n−1. The agent replans

after every attempt until it finds all solutions the room; i.e.,

when n= 0. Thus, our final planning objective at time t is

to pick the causal chain with the maximal posterior subject

to the constraints that the chain contains the target goal state

s∗ (i.e. door being pushed) and is not in the agent’s set of

solutions executed q:

c∗t = argmax
c∈ΩC

p(c|ρ,do(q);γ,β) s.t. s∗ ∈ c∧c 6∈ q, (6)

where p(c|ρ,do(q);γ,β) is defined in Equation 5. This state

definition matches information provided to human partici-

pants and places the focus of our planner on achieving task-

level goals.

Among the chains that satisfy the constraints, we rely on

our chain posterior to capture which chains are causally plau-

sible. The posterior combines the top-down structural knowl-

edge with the bottom-up attribute knowledge. This combina-

tion is powerful for two reasons: (i) bottom-up knowledge bi-

ases beliefs towards structures that contain attributes that have

been present in causal events in the past and (ii) top-down

knowledge allows the agent to bias beliefs towards structures

that have been useful in the past.

Model Results

We train our agent in the same fashion as humans; specif-

ically, we allow the agent to complete 80 trials in CC and

CE escape rooms (same number as human participants). The

agent is also limited to 3 actions in an attempt and 30 attempts

within a trial. Any agent that did not complete all trials was

removed from the study (same as human participant data—no

agents were removed from the CC condition; 7 agents were

removed from the CE condition).

Figure 4 compares human and model performance. The

model shows a similar trend as humans but with slightly

worse performance in each trial2. For the agent assigned to

the CC condition, the number of attempts needed to find the

first solution decreased significantly following the first trial

(t(79)= 8.09; p< .001) and second trial (t(79)= 4.04; p<

.001). The CE agent required less attempts to find the first

solution following the first trial only (t(72)= 6.23; p< .001).

Decreases in first and second solution attempts were not sig-

nificant between the remaining trials.

These results demonstrate that our model is roughly ca-

pable of capturing learning rates of human participants but

does not capture all significant changes in the number of at-

tempts needed: e.g., in both the CC and CE conditions, the

number of attempts needed by participants to find the second

solution consistently decreased following the first trial. How-

ever, our model overall effectively captures general trends

in human performance: the number of attempts needed to

find all solutions matches well to humans and decreases near-

monotonically, albeit at a lesser rate.

2Example solution executions for human participants and the
model can be viewed at https://vimeo.com/334518941

(a) (b)

(c) (d)

(e) (f)

Figure 4: Comparison of human and model results for the

common-cause CC3 condition and the common-effect CE3

condition. (a) and (b) compare the total number of attempts to

find all solutions; (c) and (d) compare the number of attempts

to find the first solution; (e) and (f) compare the number of

attempts to find the second solution. The overall learning

trends are similar between humans and the simulated agent

in the model.



Conclusion

In this work, we showcase a hierarchical model based on as-

sociative learning and schema reasoning. Our model inte-

grates two learning mechanisms: (i) a bottom-up theory that

learns which attributes have causal associations in the envi-

ronment, and (ii) a top-down theory that learns useful abstract

structures in the environment. Our agent chooses an interven-

tion based on the posterior of causal chains and updates its

model using the observed outcome of the intervention. Model

results show that our hybrid agent is able to capture general

trends observed in human participants and captures some of

the statistical significance observed in human performance.

These results suggest that human causal learning may consist

of a mechanism that combines bottom-up associative learning

with top-down reasoning about causal structure.

The underlying computational framework presented here

is broadly applicable outside of the OpenLock environment;

it can be applied to any reinforcement learning environment

where: (i) underlying dynamics are constrained by some

causal structure; (ii) interactive elements have observable fea-

tures which signal causal relevance; and (iii) physical loca-

tions of key elements change over time. In the future, we

hope to expand our model to account for more extreme ob-

servational changes. For example, what if levers could sud-

denly be rotated instead of pushed/pulled? What if new col-

ors were introduced which provided further cues about causal

relevance? And what if the environment began operating in

a probabilistic fashion where levers may fail to actuate prop-

erly? Future behavioral and computational work should ex-

amine how these processes integrate in more complex scenar-

ios that provide closer approximation to the real world.

Discussion

What other theories may be useful for learning causal re-

lationships? The background theories presented here—

namely that causal relationships induce state changes and ab-

stract causal knowledge can be reused—provide reasonable

background theories. However, other background theories

may also be appealing. For instance, Pearl (2009) defines a

stricter definition of causal relations based on whether or not

a causal relation is identifiable in a directed acyclic graph.

How can hypothesis space enumeration be avoided?

The spaces of ΩgA and ΩgI are enumerated in this work. Hy-

pothesis space enumeration can quickly become intractable as

problems increase in size. While this work used a fixed, fully

enumerated hypothesis space, future work will include exam-

ining how sampling-based approaches can be used to iterative

generate causal hypotheses (for an example, see Bramley et

al. (2017)).

What are the other possibilities of bottom-up associative

criteria? Our method treats low-level attributes as the cri-

teria for our bottom-up associative learning. However, other

possibilities are equally valid. For instance, a modeler could

pair attributes with specific actions, and learn distributions

of causal effects over this pairing. This decision ultimately

comes down to the resolution of the problem being consid-

ered, and what is appropriate to correctly model the problem

at hand.

How is this work connected to reinforcement learning

(RL)? The model-based planner presented here is closely

related to model-based RL. Our problem setting could be

cast in terms of a 0-1 reward function—the agent receives a

reward of 1 if the door is opened, and 0 otherwise. How-

ever, model-based RL typically assumes a world model is

provided, but our agent iteratively updates its conception of

world dynamics through associative learning and schema rea-

soning.
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